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1.  Introduction 
 
CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a computer program 
for the simulation of biomolecular systems. Initial development of the program started in 
the early 1970's in the lab of Prof. Karplus at Harvard University, leading to the first 
molecular dynamics study of a protein (McCammon, Gelin, and Karplus, Nature 267, 
585 (1977)). Today, more than 20 groups worldwide work on the maintenance and 
further development of the program. Important features of the program are: 
 
1.  It is largely self-contained 
The setup, actual calculations, and analysis are all done by the same program. 
 
2.  It is fairly complete 
Most simulation techniques, force fields, and analysis tools pertinent to biomolecules are 
part of the CHARMM program. 
 
3.  The CHARMM interface works like a programming language 
Commands resemble the Fortran programming language, various mathematical 
manipulations on a selected set of internal and external variables are possible, and 
commands can include loop structures. 
 
This workshop will provide a short introduction to the CHARMM program. After the 
workshop, participants should be able to setup, execute, and analyze standard simulation 
protocols. 
 
 
2.  Help 
 
In the 1970's the working name for the CHARMM program was HARMM (HARvard 
Macromolecular Mechanics).  This name should serve as a warning that CHARMM may 
be daunting and/or frustrating for users. The program has many options and features; 
making it a powerful and flexible tool on the one hand, and a difficult program to use on 
the other. Second, the program is mostly being developed by academic researchers, who 
prefer to write papers rather than documentation.  
 
There are a number of important sources for help: 
 
 



 2 

1.  CHARMM documentation 
Each CHARMM release contains a "doc" directory, with ASCII-based .doc 
documentation files (e.g., nbonds.doc). You can view these files on screen with 
commands like "less" or "more" or "cat". There is generally a .doc file for each module in 
CHARMM, for example a .doc file on the DYNAmics command (dynamc.doc), a .doc 
file on constraints (cons.doc), a .doc file on input/output (io.doc), etc. Use the name of 
the .doc file or grep to find out which file to read. Although this is the only official 
documentation of CHARMM, the .doc files are nearly always cryptic and sometimes 
incomplete.  
 
2.  CHARMM forum 
Since a few years, the CHARMM forum serves as a major source of help for the 
CHARMM community. This online source can be accessed through the link at the 
www.charmm.org website. Topics are divided into several categories (click on "Main 
Index"), and all posts can be searched (click on "Search"; be sure to include a wide time 
frame for the search, by default this is set to only 1 week). You can post questions 
yourself after you have become a member of the forum. 
 
3. CHARMM book 
"A guide to biomolecular simulations" by O.M. Becker and M. Karplus, Springer 2006 
(ISBN-10 1-4020-3586-1) is a guide book for CHARMM. It is based on a lab given at 
Harvard University in the 1990's and contains many exercises. 
 
4.  CHARMM tutorial 
The website http://www.ch.embnet.org/MD_tutorial/ contains a small, self-contained 
tutorial with sample CHARMM exercises. It is a good starting point for new users. 
 
5.  CHARMM testcases 
Each CHARMM release contains a "test" directory, with many sample input scripts. 
These scripts are mostly used by developers, to ensure that new code does not "break" 
existing facilities. The tests require little executation time and clearly demonstrate the 
syntax of certain commands.  
 
 
In the future, the "CHARMM GUI" (http://www.charmm-gui.org/) may also become a 
good source of help; at the moment however, the site seems to be at an experimental 
stage. 
 
 
3.  Tools 
 
Indispensible for the analysis of molecular simulations are graphical analysis tools, with 
which trajectories (movies of the positions of atoms) can be viewed. Although 
CHARMM does contain some visualization modules, it is best to use an external program 
for this purpose. Several good viewers exists; for example the VMD program (available 
for free at http://www.ks.uiuc.edu/Research/vmd/). 
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4.  Force fields 
 
Several force fields are available in CHARMM; for example the CHARMM, AMBER, 
OPLS, and MMFF force fields (see parmfile.doc and rtop.doc). Note that in some cases, a 
different compilation leading to a different executable should be used. Also, certain 
options in CHARMM are specific to the CHARMM force field (for example, fast 
SHAKE for water, and the atomic radii used for the GSBP routines).  
 
The force field is specified by two files: a topology files that describes the connectivity of 
the atoms (bonds, angles, dihedrals and improper dihedrals), and a parameter file that 
contains the parameters needed for the energy function. Please read the original literature 
for an overview of the functional form of the force fields. These files are listed in the 
CHARMM subdirectory toppar. For the CHARMM force field, the three main force 
fields are specified in the following files: 
 
1. CHARMM19  
toph19.inp and param19.inp 
This is an extended atom force field; only polar hydrogen atoms are present, the other 
hydrogen atoms are captured in their bonded heavy atoms. This force field is mostly used 
for implicit solvent simulations. 
 
2. CHARMM22 
top_all22_prot.inp and par_all22_prot.inp 
All atoms are explicitly represented. This force field is used for proteins. 
 
3. CHARMM27 
top_all27_prot_na.rtf and par_all27_prot_na.prm 
All atoms are explicitly represented; this force field is used for proteins and DNA/RNA 
(the protein part is equivalent to CHARMM22). Similar files are present for proteins and 
lipids. Note that the CMAP energy terms are automatically included in these files for the 
later versions of CHARMM; be careful when using the files from older distributions, 
since the CMAP energy terms may be missing. 
 
The other files in the toppar directory contain the topologies and parameters for various 
implicit solvent models (e.g. acepar19.inp for the ACE implicit solvent model), for 
polarizable force fields (e.g. top_all30_cheq_prot.inp), for certain chemical compounds 
(e.g. top_all34_ethers.rtf), etc. 
 
The toppar/stream subdirectory contains parameters for a variety of  other chemical 
compounds, for example for cholesterol and retinol. Read the 00readme file in this 
directory on how to use these various force field files! 
 
The toppar/non_charmm directory contains the force field specification of non-
CHARMM force fields. Again, read the 00readme file in this directory on how to use 
these files! 
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At this point, it is good to note a major philosophical difference between CHARMM and 
AMBER. AMBER has an optimistic attitude towards chemistry: since chemical 
compounds contain similar groups, parameters should be transferable from one chemical 
compound to the next. Thus, according to AMBER, you can simulate new chemical 
compounds that have not been explicitly parameterized by using the parameters from 
existing groups. CHARMM has a negative attitude: chemistry is complex and you cannot 
expect to accurately predict properties using non-optimized parameters. Thus, according 
to CHARMM, parameters are not transferable, so you should carefully parameterize any 
compound not listed in the force field. The truth is probably somewhere in the middle, 
although it is certainly true that in order to obtain calculated properties of high quality, 
very careful parameterizations are usually needed. In practice, one can usually take 
existing parameters if the chemical differences are small, but has to reparameterize (part 
of) the new molecule when the chemical differences with existing models are large. As 
always, careful comparisons should be made with experimental data. 
 
  
5.  Exercise 1: Minimizing a molecule 
 
In this exercise we will build the bpti protein using the CHARMM19 force field. We will 
minimize the protein in vacuum, and calculate the rmsd deviation with the experimental 
structure. 
 
1.  The pdb file 
Download the pdb file with code 1BPT from the protein data bank (http://www.rcsb.org). 
Note that 1 pecularity of CHARMM is, that it cannot read files with mixed large cap - 
small cap letters: all letters should either be capitals, or small size. Move the file to the 
workshop/exercise1/ directory, and name it 1bpt.pdb. 
 
Another pecularity of CHARMM is, that it can only read 1 chain per pdb file. Since the 
1bpt.pdb file also contains phosphate ions and water, we need to remove these first. Edit 
the file 1bpt.pdb and remove the phosphate and water molecules. 
 
 
2.  CHARMM input file 
CHARMM can be run interactively, but usually it's easier to collect all commands in a 
single script file. For this exercise, all commands are collected in the file minim.inp. 
Some notes when you look at minim.inp: 
 
a. All CHARMM input files start with comments. These comments have a "*" in the first 
column, the last comment should be a single "*". 
 
b. All CHARMM commands are recognized by their first four letters; the remainder is 
ignored. That's why the first four letters of a command are usually capitalized. 
 
c. You can set variables in CHARMM (see below). Here we specify the location of the 
toppar directory in the TOPPAR variable. The contents of this variable are later retrieved 
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by @TOPPAR. Be sure to set the location of this variable properly to your toppar 
directory. 
 
d. First, you need to read the topology, then the parameter files. As you can see, the 
commands to open files and to read their contents resemble Fortran. See io.doc for more 
information on reading files. 
 
e. Comments for the user are preceded by a "!". You can put this at any line. 
 
f. The GENErate command makes an internal representation of the molecule for 
CHARMM. It extracts all bond, angle, dihedral terms etc for the energy function, and sets 
the proper parameters. GENErate makes a new segment, the name of the segment is the 
word directly after the GENErate statement (up to the first four letters). By default, the 
zwitterionic state of the molecule is built. 
 
g. You can use the PRINt COOR command to print the coordinates; here we use the 
SELEct command to print just a subset of coordinates (see select.doc). Since uninitialized 
coordinates have a value of 9999 by default, we can select the atoms for which the x, y, 
or z coordinate are 9999 to see which atoms we are missing. Note that the SELEction 
statement is ended by END. 
 
h.  A dash "-" at the end of the line means that the command is continued on the next line. 
 
i.  The STOP command terminates CHARMM. 
 
 
3.  Running CHARMM 
Run this CHARMM script to find out which atomic coordinates are missing: 

 
charmm < minim.inp > minim.out 

 
where we assume that the path of the charmm executable is known. Examine the output 
file, and answer the following questions: 

 
4.  Editing the pdb file 
For historical reasons, atom CD1 of isoleucine is called CD in CHARMM. So, to read the 
coordinates of this atom properly, we have to edit the pdb file and rename isoleucine CD1 
to CD. Perform this edit, and rerun CHARMM. Are there still any missing heavy atoms 
that were present in the pdb file? 
 
 
 

Questions: What atoms are missing? What heavy atoms are missing? Were these atoms 
present in the pdb file? 
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5.  Building missing atoms 
The IC PARAm and IC BUILd commands build the missing atoms using the information 
from the parameter files (see ic.doc). While hydrogen atoms can also be build with this 
facility, its generally better to use the HBUIld facility, which uses an energy function to 
properly place the hydrogens (optimizing for hydrogen bonding). This command should 
generally be used twice. Remove the first STOP in charmm.inp and build the missing 
atoms; check to see that all atoms are initialized. 
 
 
6.  Disulfide bonds 
Examine the structure of bpti with VMD. Are there any disulfide bonds? We can make 
these disulfide bonds in CHARMM using patches. For example, the statement 
 PATCH DISU A 12 B 23 
makes a disulfide bond between residue 12 of segment A and residue 23 of segment B. 
Insert the proper PATCH statements to make the disulfide bonds of bpti. Rerun 
CHARMM with the second STOP removed. 
 
 
7.  Minimization 
After removing the third STOP, the input file will perform a short minimization. Some 
notes: 
 
a. First we need to setup the cutoffs for the electrostatic and Van Der Waals interactions. 
There are many possible ways of doing this, which will severely impact the performance 
and the accuracy of the calculation. It is pertinent that you read the recommendations in 
nbonds.doc before doing any calculation! Also, some advanced algorithms are available 
that may significantly decrease the time needed to perform the calculations (BYCU, 
BYCC, etc); however, these may not work for all situations. 
 

 
b. Before doing a minimization, energy needs to be called. 
 
c. Several minimization routines are available in CHARMM: see minimiz.doc. Here we 
will first use a steepest descent minimization, followed by an adapted base Newton-
Raphson minimization. Note that we can add the NBONds options to the MINImize or 
ENERgy statements. 
 
d. The final coordinates are written as pdb file and as CHARMM coordinate files. The 
latter have more accuracy; moreover, in this format multiple segments (chains) can be 
read into CHARMM. View the minimized coordinates with VMD and compare these to 
the initial structure. 
 
 

Questions: Read nbonds.doc with special attention to the recommended options for 
generating the nonbonded list. What options should we use here (vacuum calculation)? 
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8.  Analysis 
After removing the fourth stop, we can perform some simple analysis of the minimized 
structure using the COOR command (see corman.doc). This powerful set of commands 
manipulates the coordinates. CHARMM has two spaces for the coordinates: the normal 
set and a comparison set. We fill the comparison set with the experimental coordinates, 
and then use the COOR ORIE RMSD command to calculate the rmsd. 
 
 
6.  Atom selection 
 
As illustrated in Exercise 1, CHARMM has powerful commands to select a subset of the 
system. Moreover, these selections can be stored and recalled by name through the 
DEFIne command. For example: 
 
 define water select resname tip3 end                               ! water molecules (TIP3P) 
 define bb select type n .or. type ca .or. type c end           ! protein backbone 
 print coor select water end              ! print water coordinates 
 print coor select bb end                   ! print backbone coordinates 
 
Definitions can also be used in the DEFIne command, for example: 
 
 define water select resname tip3 end 
 define centerprot select (.not. water) .and. (point 0 0 0 cut 3) end 
             
The file select.doc gives a full overview of the select statement. 
 
 
7.  Variables 
 
In CHARMM, variables can be set and manipulated. For example, in Exercise 1, we 
introduced a variable TOPPAR to point to the directory where the topology and 
parameter files are stored. The value of this variable was retrieved by @TOPPAR. In 
addition to user-defined variables, several internal CHARMM variables can also be 
retrieved. For example, after performing a RMSD overlay (as in Exercise 1), the value of 
the rmsd is stored in the variable ?RMS. Note that internal variables are recalled by ?, 
external (or user-defined variables) by @. Most internal variables are listed in subst.doc. 
 
The variables can be manipulated in several ways. For example, we can perform 
algebraic manipulations by the CALC command (see miscom.doc): 
 
 set x 0.0           ! define variable x, set it to zero 
 calc y = @x + 3      ! define y = x + 3 
 calc z  = sin ( @y + ?pi )     ! π is known as the internal variable ?pi 
 incr x by 1    ! x=x+1 
 ener      ! calculate the energy 
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 calc avener = ?ENER / ?NATOM    ! average energy per atom  
 
Note that the "=" is optional in the CALC statement. 
 
Variables can be initialized in the CHARMM script, or be given as option to the 
CHARMM command: 
 charmm X=3 < test.inp > test.out 
 charmm X=4 TOPPAR=/home/me/myself/i/toppar < newtest.inp > newtest.out 
 
In addition to these variables, CHARMM also provides access to vector variables. The 
length of these vectors equals the number of atoms in the system. For some weird reason, 
access to the vector variables is given through the SCALar command (see scalar.doc). 
Several of the vectors are predefined, for example "x" for the x coordinates, "dx" for the 
force in the x direction, "mass" for the atomic masses, etc. In addition to these vectors, 
the user can define up to 9 additional vectors. These user-defined vectors are called 
"sca1", "sca2", etc. (up to "sca9"). For example: 
 
 scalar sca1 = x            ! set sca1 equal to the x-coordinate 
 scalar sca2 = mass ! set sca2 equal to the atomic mass 
 scalar sca2 divi ! take the inverse of sca2: sca2 = 1/sca2 
 scalar sca1 prod sca2 ! multiply sca1 by sca2: sca1 = sca1 * sca2 = x/mass 
 scalar sca1 mult 2       ! multiply sca1 by the number 2 
 
The scalar commands are extremely handy for analysis or setup. 
 
 
8.  Program flow 
 
Program flow in CHARMM can be controlled by IF ... ELSE ... ENDIF statements and 
by GOTO/LABEL statements. Coupled with the use of variables, this enables a 
programmable interface to CHARMM. For example, "subroutines" can be written in the 
following way: 
 
 set return here   ! set exit label 
 goto subroutine  ! jump to the "label subroutine" statement 
 label here   ! exit label 
 ... 
 stop    ! stop the program 
 
 label subroutine  ! start of "subroutine" 
 ... 
 goto @return   ! exit  
 
 
 
 



 9 

Labels can also contain variables, for example 
 
 goto subroutine 
 label here-1   ! first option 
 ... 
 stop 
 label here-2   ! second option 
 ... 
 stop 
 
 label subroutine 
 ... 
 calc i @x + 1 
 goto here-@i                        ! programmable label 
 
In a similar way, program flow can be controlled by IF statements: 
 
IF @x .lt. 3 THEN 
    ... 
ELSE 
    IF @x .gt. 4 THEN 
         ... 
    ELSE 
         ... 
    ENDIF 
ENDIF 
 
Note that an "ELSEIF" statement does not exist in CHARMM; instead, you can embed 
multiple IF statements. Since CHARMM can only handle one logical statement at the 
time, you can also use embedding to resolve the evaluation of multiple logical statements: 
  
 ! IF @a .eq. 1   .and.   @b .eq. 1 THEN        ! cannot be handled, use instead: 
 IF @a .eq. 1 THEN 
    IF @b .eq. 1 THEN 
    ... 
               ENDIF 
            ENDIF 
 
 ! IF @a .eq. 1    .or.    @b .eq. 1 THEN ! cannot be handled, use instead: 
 If @a .eq. 1 THEN 
    ... 
 ELSE 
    IF @b .eq. 1 THEN 
    ... 
    ENDIF 
 ENDIF 



 10 

If you only use 1 statement, you may skip the THEN: 
 
 IF @a .eq. 1 THEN 
     SET b 1 
           ENDIF 
 
 ! is equivalent to 
 IF @a .eq. 1 SET b 1 
 
 
9.  System calls 
 
Charmm can call external programs by the SYSTem command. For example: 
 
 system "echo I am here > logfile" 
 system "echo ?ENER >> logfile" 
 
System commands can be combined with STREAM statements for very flexible program 
flow: 
 
 system "echo * charmm stream > tmp; echo * >> tmp" 
 system "awk '/REACHED/{print "SET X ",$NF;exit;}' charmm.out >> tmp"  
 system "echo return >> tmp" 
 stream tmp 
 calc newx @X +3 
  
Running this input file as 
 
 charmm < charmm.inp > charmm.out 
 
will result in the generation of a stream file tmp, which depends on the output of the 
current job. The stream file sets a variable x, which is read by CHARMM through the 
STREAM command. 
 
Feedback flow like this is handy in many instances. 
 
One note on different architectures: notably IBM machines are notorious for not correctly 
managing system commands and/or goto commands. Sometimes you can work around 
this by putting these commands in seperate stream files; in general, to avoid unpleasant 
surprises, you should test your job script before starting a production run. 
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10.  Exercise 2: A protein in water 
 
In this exercise we will perform a short molecular dynamics simulation of insulin in 
water. We will use periodic boundary conditions and the Particle Mesh Ewald method for 
the long-range electrostatics. 
 
1. Setup 
Download the pdb file with access code 4INS from the protein data bank. We will only 
consider chain A and B; make a file 4insa.pdb that contains chain A and 4insb.pdb that 
contains chain B. Be sure to rename the isoleucine CD1 atoms (see Exercise 1). 
Remember that CHARMM is picky about mixing upper and lower case letters. Then 
execute CHARMM using 
 
 charmm STAGE=1 < insulin.inp > insulin.out 
 
What does the STAGE variable do? Do you understand the program flow? Did 
CHARMM finish correctly? 
 
2. Histidines 
CHARMM needs to know the protonation site of the histidines. There are several options 
possible; for example protonation of NE, protonation of ND, or double protonation. 
These residues have different names: HSE, HSD, and HSP, respectively. Normally, one 
would use experimental data or perform continuum electrostatics or quantum calculations 
to establish the proper protonation states. Here, we will use the ND protonation state. Edit 
the appropriate pdb file and change HIS to HSD. 
 
View the molecule with VMD; are there any disulfide bonds to take care of? Edit the file 
insulin.inp (before the first stop statement) to add missing atoms and to patch the 
disulfide bonds. Execute CHARMM using 
 
 charmm STAGE=2 < insulin.inp > insulin.out 
 
3.  Minimization 
It's a good idea to perform a slight minization in vacuum to remove some possible bad 
steric contacts. Add the minimization commands and execute CHARMM using 
 
  charmm STAGE=3 < insulin.inp > insulin.out 
 
4.  Solvation 
CHARMM comes with very few pre-equilibrated waterboxes: since each simulated 
system will be different, the user has to construct such a box by himself. Here we will 
construct a large cubic box from 8 smaller cubic boxes. We can use the special "read sequ 
tips" command, to read in a bunch of water molecules. In the input file, the first layer of 
water boxes is generated: you should edit the input file to add the second layer of water 
boxes. In the exercise, we leave a small layer of water around the protein, in real life this 
might be bigger. After deleting waters that overlap with the protein or extend too far from 
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the protein, we need to add ions such that the total system is neutral (since we will use the 
particle mesh Ewald method later on). Where did CHARMM print the total charge of the 
system? Edit the file to add the proper number and kinds of ions for charge neutrality. We 
continue by saving a psf file (protein structure file): this file contains all the connectivity 
data needed by CHARMM. After all edits run CHARMM by 
 
 charmm STAGE=4 < insulin.inp > insulin.out 
 
Be sure to visualize the resulting coordinate file with VMD. 
 
 
5.  Molecular dynamics 
CHARMM can handle periodic boundary conditions of various box shapes (cubic, 
orthorhombic, rectangular, etc.); here we will use cubic periodic boundary conditions. 
These are setup by the CRYStal and IMAGe commands. After this, the nonbonded 
options are set; in this case we will use the particle mesh Ewald method for the long-
range electrostatic interactions. After a short (too short) minimization, we jump right to a 
molecular dynamics run in the NPT ensemble, using the Nosé-Hoover algorithm. Note 
that normally, we would perform long minimizations using restraints, slow heat-up and 
equilibration using restraints in the NVT ensemble, and after equilibration move to NPT. 
Execute the commands by 
  
 charmm STAGE=5 < insulin.inp > insulin.out 
 
Be sure to visualize the trajectory with VMD and to examine the CHARMM output file. 

 
 
 
11.  Exercise 3: Correl 
 
The correl module (see correl.doc) contains powerful trajectory (including coordinate and 
velocity trajectories) analysis tools. Options include: the calculation of time-correlation 
functions, autocorrelation functions, and time series. These functions can be calculated 
for a large set of user-defined objects, including dipoles, vectors, angles, etc. The 
functions can also be manipulated by a range of mathematical operations. You should at 
least browse the correl.doc document to get a sense of the different possibilities. Since the 
correl module is quite efficient, you should try to rephrase the property that you want to 
calculate into an object that can be handled by this module. 
 
In this short exercise, we will use correl to calculate some elementary time series from 
the insulin trajectory generated in Exercise 2. 

Questions: How can you check in your output file that the periodic boundary conditions 
were setup properly? How can you check that the image list was setup properly? What 
properties does CHARMM print out during the dynamics? 
 



 13 

 
1.  Correl.inp 
Carefully read correl.inp. What are we calculating? How many entries do you expect in 
each of the .dat files (unit 14-16)? Execute this CHARMM script. Check some of the 
calculated angles with VMD. 
 
2. Rmsd and radius of gyration 
Modify the correl.inp such that the backbone rmsd with the experimental structure and 
the radius of gyration are calculated for each frame of the trajectory.  
 

 
 
 
12.  Bomb levels and print levels 
 
CHARMM normally prints a lot of useful output. The amount of output can be controlled 
by the PRNLevel command (see miscom.doc): 
 
 prnlevel 5 ! default print level 
 prnlevel 0 ! print less than default 
 prnlevel 7 ! print more than default 
 
The maximum print level is believed to be 15, the minimum -15. For parallel jobs, the 
printlevel can be controlled at the node level (with 0 being the master node): 
 
 prnlev -15   ! set print level to lowest for all nodes 
 prnlev 5 node 0 ! then set print level to normal for master node 
 
In a similar way, termination of CHARMM due to errors is controlled by the BOMBlevel 
command: 
 
 bomb 0  ! default bomb level 
 bomb -1  ! continue when minor errors occur 
 
 The default BOMBlevel is 0; decreasing the BOMBlevel with cause CHARMM to 
continue after errors are found. Be very careful in using this option: while some errors are 
minor, many indicate significant problems with the simulation. 
 
 
 
 
 

Question: What should MAXA be for the rmsd/radius of gyration calculation? 
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13.  Exercise 4: Biased molecular dynamics 
 
CHARMM contains several modules for biasing simulations: methods that force 
trajectory along a reaction coordinate. Some of these reaction coordinates are predefined 
geometrical objects, some are energetical; with some the free energy of the transition can 
be calculated, with some this is much more difficult. Here we will consider the biased 
molecular dynamics method (BMD; see hqbm.doc). In BMD a half-quadratic biasing 
potential is added to the energy function, which pushes the trajectory in a forward 
direction along a pre-defined reaction coordinate. Several variants of the BMD method 
have been implemented: some of these can also be used for Φ analysis, calculation of 
protection factors, etc. The user is referred to the original literature (some of which is 
cited in hqbm.doc) for more information. 
 
We will simulate the opening motion of the small protein adenylate kinase. This protein 
catalyzes the transfer of a phosphoryl group from ATP to AMP; the mechanism involves 
large hinge motions of the two binding pockets. 
 
1. Setup 
Download 4AKE and 1AKE pdb files from the protein data bank. Which conformer 
corresponds to the open state, which to the closed state? Edit the SET OPENPDB and 
SET CLOSEDPDB statements in adk.inp accordingly. Prepare pdb files for chains A; be 
sure to check the Ile and His residues (you can take the HSD state); name the pdb files 
1akea.pdb and 4akea.pdb. Note that to make life simple, we will not consider any of the 
ligands: the opening motion is known to also occur in the absence of ligands (see 
Henzler-Wildman et. al, Nature 450, 913 (2007)). Do the proteins have the same 
sequence? If not, what should we do? 
 
To save time, we will perform the simulations with the EEF1 implicit solvent model. 
CHARMM contains many implicit solvent models (for example, GENBORN, ACE, 
SASA, EEF1, GBSW, GBMV, FACTS, etc); some of which are good for small proteins, 
some of which are good for bigger proteins, some of which can be used for membranes, 
some for DNA, etc. Please read the original literature (see the appropriate .doc-s) on 
these models. Note that for some unknown reason, the topology and parameter files for 
EEF1 are stored in support/aspara. Edit the adk.inp file to add missing atoms (both for the 
closed and the open state; see adk.inp), and to add the rmsd overlay command. Run 
charmm using 
 
 charmm WHAT=1 < adk.inp > adk.out 
 

 
 
 

Questions: What does the COOR INIT command do? Why did we execute this before 
reading in the open state? Why did we not use a READ SEQU and GENErate command 
for the open state? 
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2.  BMD simulation 
Next, we will perform the actual BMD simulation. We setup the EEF1 solvent model (see 
eef1.doc) and do a short minimization of the closed state (add the proper commands in 
adk.inp). We will use the RC1 reaction coordinate for BMD, with a very large force 
constant, and simulate for 5000 steps. Run CHARMM with 
 
 charmm WHAT=2 < adk.inp > adk.out 
 
View the resulting trajectory with VMD. What motion do you observe? 

 
3. Restart 
Obviously, we would like to continue this simulation. We can restart the simulation using 
the RESTart subcommand in DYNamics and the restart file generated in step 2. Of 
course, we need to also re-setup the BMD. Edit adk.inp to perform a restart of another 
5000 steps; be sure to not overwrite any previously generated files. Use dynamc.doc for 
the proper commands. Execute CHARMM with 
 
 charmm WHAT=3 < adk.inp > adk1.out 
 
View the trajectory. How far did we get? 
 
 
4.  Merging the trajectories 
To facilitate the visual analysis, we can merge the two trajectories with the MERGe 
command (see dynamc.doc). Read the appropriate commands in adk.inp and execute 
CHARMM with 
 
 charmm WHAT=4 < adk.inp > adk2.out 
 
View the merged trajectory with VMD. 
 

 
 
 
 

Questions: What does the RC1 reaction coordinate do (see hqbm.doc)? On what atoms do 
we apply this? What does the bmd.dat file report? Why did we use Langevin dynamics, 
and what does this do? Did the trajectory reach the target? 
 

Questions: What does the SKIP option in MERGe do? Can we use the MERGe command 
for dcd files with a different number of frames? (Try it: for example by generating a dcd 
file with 1 or 2 frames). How can we merge trajectories of unequal length? (Hint: see the 
TRAJectory command in dynamc.doc). 
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14.  Exercise 5: Targeted molecular dynamics 
 
In this short exercise, we will look at another method to bias the trajectory along a 
reaction coordinate. The TMD method (see tmd.doc) uses a holonomic constraint that 
reduces the rmsd with the target with a predefined value at each time step. Several 
variants of the TMD method have been implemented (see tmd.doc); here we will use the 
original method for the closed to open transition of adenylate kinase. 
 
1. TMD simulation 
We will use the psf file and the open.cor and closed.cor coordinate files from Exercise 4. 
First we will minimize the closed structure a bit; add the appropriate commands to 
tmd.inp. We will use a very large (too large) rmsd step size for TMD to limit the 
computation time. What is the rmsd step size (see tmd.inp)? The TMD method has only 
been implemented for the leap frog algorithm. Second, the method has only been 
implemented using the Berendsen thermostat. Unfortunately, this thermostat is not very 
good; it has been shown to lead to "cold" and "hot" regions in the system. Better 
temperature control can be obtained by the Langevin integrator, which couples the 
system to a stochastic heat bath. How can we run two temperature controls at the same 
time? Edit the options for the Berendsen thermostat in such a way that the Berendsen is 
effectively turned off, and only the Langevin thermostat is active. Run the simulation 
using 
 
 charmm < tmd.inp > tmd.out 
 
View the resulting trajectory with VMD. 
 

 
 
15.  Exercise 6: Normal mode analysis 
 
CHARMM has multiple options for harmonic analysis. It can calculate normal modes 
and quasi-harmonic (or essential) modes; it can also use the elastic network model or 
block normal mode algorithms for large systems. All this is done by the vibran module, 
see vibran.doc. Here we will perform normal mode analysis of a small helix. 
 
1. Setup 
Download the entry 1o06 from the protein data bank. Prepare the pdb file for CHARMM 
(taking care of ILE/HIS, only keeping one chain), name this file 1o06.pdb. Edit nm.inp to 
read the sequence, generate the protein, read in the coordinates, and to build the missing 
coordinates. To obtain normal modes, we first have to perform a deep minimization of 
the structure. To keep the protein as close to the experimental structure as possible, we 

Questions: What is printed in the tmd.dat file (unit 88)? Plot the rmsd with the target 
versus time. Repeat this for the BMD simulation (merged trajectory) of Exercise 4, and 
compare the results. Which method leads to more physical pathways?  
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will use harmonic restraints (see cons.doc) that penalize deviations form the coordinates 
in the comparison set: you should add the commands to copy the experimental structure 
to the comparison set. We will loop over restraints, using very stiff force constants at 
first, and slowly releasing these. At the end, no restraints are left, and a final 
minimization with respect to the gradient is performed. Note that we use a distance-
dependent dielectric constant (see nbonds.doc), to model the effect of water in a poor-
men's-way. Read the script carefully, and be sure that you understand each step. Execute 
CHARMM by 
  
 charmm WHAT=1 < nm.inp > nm1.out 
 
Did the minimization converge? Visualize an overlay of the minimized structure with the 
experimental structure. Are there differences? How are these quantified? Where are they 
located? Are they acceptable? 

 
2.  Normal mode analysis 
The VIBRan module (see vibran.doc) performs the normal mode analysis. It has also 
facilities to manipulate the calculated modes, or to write them to trajectory files. Here we 
will write various modes to file. Execute the script with 
 
 charmm WHAT=2 < nm.inp > nm2.out 
 
Carefully check the output. Are the first 6 frequencies zero? Visualize some of the modes 
using VMD. Why did we use a temperature of 2000K for most modes?  
 
 
16.  Exercise 7: Umbrella sampling 
 
CHARMM has various modules for free energy simulations, for example PERT for 
single topology thermodynamic integration (see pert.doc), BLOCk for dual topology 
thermodynamic integration (see block.doc), TSM for thermodynamic integration (see 
tsm.doc), and UMBR for umbrella sampling (see umbrel.doc). In this short exercise we 
will introduce the ADUM module for adaptive umbrella sampling (see adumb.doc). We 
will calculate the two-dimensional free energy surface of the alanine-dipeptide as a 
function of its ϕ and ψ dihedral angles. 
 
1. Setup 
We will use the ACE I implicit solvent model (see ace.doc). Since no experimental 
structure of the peptide is available, we need to generate an initial structure ourselves. 
This can be done with the IC module (see intcor.doc): add the appropriate commands in 

Questions: Repeat the minimization using a constant dielectric (be sure to use the proper 
NBONDs options). Visualize overlays of the resulting structure with the experimental and 
the previously minimized structure. What do you see? Explain the result. 
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the umb.inp input file. After specifying the nonbonded list, we need to setup the biasing 
potentials. These potentials use interpolating functions to connect the various bins. Let's 
use a bin width of 5 degrees, and 12 trigonometric functions and first order polynomial 
for the interpolating functions. After adding the appropriate commands (note that all 
commands from the ADUMb module start with UMBR, not with ADUM; this is a 
mistake in adumb.doc), and reading the rest of the input file, run CHARMM by 
 
 charmm < umb.inp > umb.out 
 
2.  Analysis  
If all went well, an extremely long output file was generated. Where can we find the free 
energy surface? What is the format of the output? How many times was a free energy 
surface calculated? Write a shell script (or other tool) to extract the various surfaces, and 
visualize them using Mathematica, xmgrace, gnuplot, or another plotting tool. How do 
these surfaces change from the one simulation to the next? Where are the free energy 
basins, where are the barriers? How many pathways can be constructed that connect the 
various basins?  
 

 
 
17.  Conclusion 
 
This concludes the CHARMM workshop. You are now ready to simulate your own 
system! There are many functions of CHARMM that we did not discuss, for example 
continuum electrostatic calculations, mixed quantum mechanical - classical simulations, 
Monte Carlo simulations, transition path sampling, etc. etc. I hope you will explore these 
on your own!  

Questions: The trajectory file is a concatenation of all adaptive umbrella sampling 
simulations. Extract the sampled ϕ and ψ dihedral angles from each simulation from the 
trajectory. Project these onto the free energy surface of the previous run (since the biasing 
potential equals the inverse of the previously generated free energy surface). What do you 
observe for the first few runs? What happens in the last few runs? Explain the difference. 
What do you expect to see when the free energy surface is fully converged? 
 
 


