EGN 3433 Modeling and Analysis of Engineering Systems (Elective course, May be substituted for Differential Equations Course)

1. Catalog Description of Course:

SEP 2 9 2010

Dynamic analysis of electrical, mechanical, hydraulic and thermal systems; Laplace transforms; numerical methods; use of computers in dynamic systems; analytical solution to first and second OF order ODEs. Restricted to majors. Prereq: MAC 2283 and PHY 2049. 3 credits.

Textbook Used: Differential Equations - Modeling with Matlab. Paul Davis

Course Objectives:

- 1. to learn how to represent a physical situation by a differential equation and initial or boundary conditions. Applications will be made to problems from all engineering disciplines.
- 2. to learn standard methods for solution of ordinary differential equations, similar to what is covered in Differential Equations but with an emphasis on the physical meaning of the equation and solution.
- 3. to learn how to use current software available for the numerical and analytical solution of ordinary differential equations.

Course Outcomes: At the end of course students will be able to:

- 1. solve first order differential equations by anti-differentiation and separation of variables.
- solve analytically linear first order equations by the integrating factor method.
- 3. solve analytically homogeneous and non-homogeneous second order differential equations with constant coefficients.
- 4. solve linear first and second order differential equations by Laplace transforms.
- 5. solve non-linear equations numerically using Euler's method.
- 6. represent differential equations and systems of differential equations by block diagrams.
- use commercial software to obtain numerical solutions for complex differential equations.
- 8. generate from first principles the differential equations representing various electrical
- generate from first principles the differential equations representing various spring-mass systems.
- 10. generate from first principles the differential equations representing various thermal systems. Information

In table below, indicate how the outcome relates to ABET a-k criteria:

Outcome	а	b	С	d	е	f	g	h	i	j	k
Outcome 1	X										
Outcome 2	X										
Outcome 3	X										
Outcome 4	X										
Outcome 5	X	X									
Outcome 6	X						X				
Outcome 7	X	X					X				X
Outcome 8	X				X						
Outcome 9	X				X						
Outcome 10	X				X						

5. Assessment Tools and Techniques Used:

List tools used such as homework, quizzes, tests, projects etc. If possible relate each tool to the outcome being assessed.

Quiz 1: Outcomes 1 and 6

Quiz 2: Outcomes 1 and 6

Quiz 3: Outcomes 1 and 10

Quiz 4: Outcome 2

Quiz 5: Outcome 9

Quiz 6: Outcome 3

Quiz 7: Outcome 8

Quiz 8: Outcome 5

Quiz 9: Outcome 4

Quiz 10: Outcome 4

Exam 1: Outcomes 1, 2, 6, 10

Exam 2: Outcomes 3, 8, 9

Final: Outcomes 1, 2, 3, 4

Lab Exercise 1: outcomes 6 and 7

Lab Exercises 2, 3, 4: Outcomes 6, 7, 10

Lab Exercises 5, 6, 7: Outcomes 6, 7 and 9

Lab Exercises 8, 9: Outcomes 6, 7 and 3

Lab Exercises 10, 11: Outcomes 6, 7 and 8

Lab Exercises 12, 13: Outcome 5

6. Course Structure and Course Schedule:

Two 75 minute lectures per week

One 2 hour computer lab per week for about 10 of the 15 weeks

Homework is assigned but not graded.

7. Faculty Member Responsible: Scott W. Campbell

May 22, 2007.

A CALLIA VED

SEP 2 9 2010

FLORIDA BOARD OF PROFESSIONAL ENGINEERS